Inorganic Chemistry

Density Functional Analysis of the Spin Exchange Interactions and Charge Order Patterns in the Layered Magnetic Oxides $YBaM_2O_5$ (M = Mn, Fe, Co)

Yuemei Zhang and Myung-Hwan Whangbo*

Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States

Supporting Information

ABSTRACT: The spin and charge order phenomena of the layered magnetic oxides $YBaM_2O_5$ (M = Mn, Fe, Co) were analyzed on the basis of density functional calculations. We evaluated the spin exchange interactions of $YBaM_2O_5$ by performing energy-mapping analysis based on density functional calculations to find why they undergo a three-dimensional magnetic ordering at high temperature. We estimated the relative stabilities of the checkerboard and stripe charge order patterns of $YBaM_2O_5$ (M = Mn, Fe, Co) by optimizing their structures with density functional calculations to probe if the nature of the charge order pattern depends on whether their transition-metal ions are Jahn–Teller active.

1. INTRODUCTION

Transition-metal oxides based on perovskite-type structures exhibit rich physical properties associated with the charge, spin, and/or orbital order of their transition-metal cations. The layered magnetic oxides $YBaM_2O_5$ (M = Mn, Fe, Co) are quite special because they exhibit all three types of ordering phenomena. In the M_2O_5 slabs of YBa M_2O_5 , the MO₅ square pyramids form the M_2O_9 dumbbell units by sharing their apical O atoms (O_{ap}), and these dumbbell units share their basal O atoms (O_{bs}) to form the M₂O₅ slabs parallel to the *ab*-plane. These slabs, containing a Ba^{2+} ion in every M₄ cube, alternate with layers of Y^{3+} ions along the *c*-direction (Figure 1). The transition-metal ions exist as $M^{2.5+}$ cations when their sites are equivalent in structure. This monovalence state of YBaM2O5 is stable at high temperatures, but lowering the temperature induces a charge order (i.e., charge disproportionation), 2 $M^{2.5+} \rightarrow M^{2+} + M^{3+}$, leading to a mixedvalence state. Two different types of charge order occur in the M2O5 slabs of YBaM2O5; YBaMn2O5 exhibits a checkerboard charge order (CCO) of the M^{2+} and M^{3+} ions (Figure 2a),^{1–3} whereas both YBaFe₂O₅⁴ and YBaCo₂O₅⁵ show a stripe charge order (SCO) of the M^{2+} and M^{3+} ions with the stripes running along the b-direction (Figure 2b). YBaMn₂O₅ is similar to $YBaM_2O_5$ (M = Fe, Co) in spin order in that their magnetic ground states adopt a G-type antiferromagnetic (AFM) coupling between nearest-neighbor spins along the a-, b-, and *c*-directions.^{2–5} Nevertheless, the SCO plus the G-type AFM spin order leads to zero overall moment (i.e., AFM state) for YBaM₂O₅ (M = Fe, Co), but the CCO plus the G-type AFM spin order to a nonzero overall moment (i.e., ferrimagnetic state) for YBaMn₂O₅.^{1,3} Furthermore, YBaMn₂O₅ is different from

YBaM₂O₅ (M = Fe, Co) in that the spin orientation is along the *c*-axis in YBaM₂O₅,^{2,3} but perpendicular to the *c*-axis in YBaM₂O₅ (M = Fe, Co).^{4,5}

Because of their interesting physical properties, the layered oxides $YBaM_2O_5$ (M = Mn, Fe, Co) have been examined in a number of theoretical studies based on density functional theory (DFT) calculations.^{6–13} Vidya et al.⁸ found the ferrimagnetic state to be the ground state for YBaMn₂O₅, and showed the occurrence of the orbital order associated with the CCO in terms of charge-density plots. Xiang et al.¹⁰ showed that the nature of the magnetic ground state of YBaMn₂O₅ depends on the ∠Mn-O-Mn angle of the Mn-O-Mn bridges in the ab plane. Hap et al.¹¹ examined YBaFe₂O₅ to show that the orbital order corresponds to the local distortions of the FeO5 square pyramids. Vidya et al.¹² confirmed the ferrimagnetic ground state for YBaMn₂O₅ and the G-type AFM ground states for YBaFe₂O₅ and YBaCo₂O₅, and analyzed the Born effective charges to assess the charge orders of $YBaM_2O_5$ (M = Mn, Fe, Co). Using a model Hamiltonian and the assumption of the crystal field split pattern, $(xz, yz) < xy < z^2 < x^2 - y^2$, for a MO₅ square pyramid with $C_{4\nu}$ symmetry, Wang et al.¹⁴ investigated the relative stabilities of the CCO and SCO in YBaMn₂O₅ and YBaCo₂O₅ to suggest that the CCO is favored when there is no Jahn–Teller (JT) active ion, but the SCO is favored if there exist JT-active ions.

There are two aspects of $YBaM_2O_5$ (M = Mn, Fe, Co) that remain puzzling. One is that their three-dimensional (3D) magnetic ordering temperatures are high; the 3D AFM ordering

```
Received:May 8, 2011Published:September 26, 2011
```


Figure 1. Perspective view of the crystal structure of $YBaM_2O_5$ (M = Mn, Fe, Co), where the red, white, green, and yellow circles represent the M, O, Ba, and Y atoms, respectively.

Figure 2. (a) Three ordered spin arrangements (namely, the FM, A-type AFM, and G-type AFM arrangements) of YBaMn₂O₅ with the CCO pattern employed to determine the U value appropriate for the DFT+U calculations. The Mn³⁺ and Mn²⁺ sites are identified by the gray and white circles, respectively, in the first diagram. The up-spin and down-spin Mn sites are indicated by cyan and white circles, respectively. The G-type AFM arrangement leads to the ferrimagnetic state. (b) The SCO pattern of YBaM₂O₅ (M = Fe, Co). The M³⁺ and M²⁺ sites are identified by the gray and white circles, respectively.

of YBaFe₂O₅ and YBaCo₂O₅ occurs at high temperatures (at $T_N = 430 \text{ K}^4$ and 330 K,⁵ respectively), and so is the ferromagnetic ordering of YBa Mn_2O_5 (167 K).² This implies that the $M-O\cdots O-M$ (M = Mn, Fe, Co) spin exchange interactions between adjacent M₂O₅ slabs along the *c*-axis is substantially strong. So far, there has been no systematic study on the spin exchange interactions of all three oxides $YBaM_2O_5$ (M = Mn, Fe, Co). In the neutron scattering study of YBaFe₂O₅ by Chang et al.,¹⁵ the strength of the interslab Fe-O···O-Fe spin exchange was estimated to be only 1% of the Fe-O-Fe spin exchange within each Fe_2O_9 dumbbell.¹⁵ Spiel et al.¹³ extracted a few spin exchange parameters of YBaFe2O5 from their DFT calculations to compare with the experimental values of Chang et al.,¹⁵ and reported only the average of the Fe-O···O-Fe and the Fe-O-Fe spin exchanges along the c-direction. Thus, it is timely and important to provide a comprehensive study of the spin exchange interactions for all $YBaM_2O_5$ (M = Mn, Fe, Co) on the basis of DFT calculations. The other puzzling aspect is if the nature of the charge order pattern of YBaM₂O₅ is determined by whether their M^{2^+} and/or M^{3^+} ions are JT-active or not. The crystal field split pattern, $(xz, yz) < xy < z^2 < x^2 - y^2$, employed by Wang et al.¹⁴ for a MO₅ square pyramid with $C_{4\nu}$ symmetry is appropriate only if the $\angle O_{ap} - M - O_{bs}$ angles of the MO₅ square pyramids are close to 90°.¹⁶ In YBaM₂O₅ (M = Mn, Fe, Co) these angles are substantially greater than 90°,¹⁷ which lowers the

Table 1. R	elative Energies	" of the FM,	A-type AFM,	and
G-type AFI	M Spin Arrangei	nents ^b of YE	BaMn ₂ O ₅ ^c	

U	FM	A-type AFM	G-type AFM
0 eV	0	-323	-412
1 eV	0	-267	-295
2 eV	0	-213	-199
In max ma	EII b Dafaad	in Eigene 2 C Determined	from the DET I

"In meV per FU." Defined in Figure 3. Determined from the DFT+U calculations with U = 0, 1, and 2 eV.

Figure 3. Spin exchange paths of YBaM₂O₅: (a) M = Mn and (b) M = Fe, Co. The M³⁺ and M²⁺ ions are represented by large gray and large white circles, respectively. The numbers 1, 2, 3, etc. represent the spin exchanges J_{11} , J_{22} , J_{33} , etc., respectively.

xy level below the (*xz*, *yz*) level, leading to the split pattern *xy* < (*xz*, *yz*) < $z^2 < x^2 - y^2$.¹⁶ As a consequence, the high-spin Mn²⁺ and Mn³⁺ ions of YBaMn₂O₅ are not JT-active, nor are the high-spin Fe²⁺ and Fe³⁺ ions of YBaFe₂O₅. Nevertheless, the CCO is found in YBaMn₂O₅, but the SCO in YBaFe₂O₅. Thus, it is questionable if the model Hamiltonian study of Wang et al.¹⁴ is valid. It is important to quantitatively estimate the relative stabilities of the CCO and SCO in each of YBaM₂O₅ (M = Mn, Fe, Co) on the basis of DFT calculations.

In the present work the aforementioned two questions are investigated. We evaluate the spin exchange interactions of all three oxides $YBaM_2O_5$ (M = Mn, Fe, Co) by performing energy-mapping analysis based on DFT calculations.¹⁸ Then we estimate the relative stabilities of the CCO and SCO in $YBaM_2O_5$ (M = Mn, Fe, Co) by optimizing their structures in their magnetic ground state on the basis of DFT calculations.

2. DETAILS OF CALCULATIONS

Our spin-polarized density functional calculations employed the projector augmented wave method ^{19,20} encoded in the Vienna ab initio simulation package,²¹ the generalized gradient approximation for the exchange and correlation corrections,²² and the plane wave cutoff energy of 400 eV. The electron correlation associated with the M 3d states was taken care of by performing DFT plus on-site repulsion (DFT+U) calculations.²³ The DFT+U method is empirical in nature because one needs to determine the *U* value appropriate for a given magnetic system by performing a series of DFT+U calculations with several different *U* values.^{24–26} For the YBaM₂O₅ (M = Mn, Fe, Co) system, the most important magnetic property to reproduce by DFT+U calculations is that they all adopt the G-type AFM spin arrangement as the magnetic ground state. The U value typically used for the transition-metal elements Mn, Fe, Co, and Cu is in the vicinity of 4 eV. For YBaFe₂O₅ and YBaCo₂O₅, the G-type AFM state is found to be the magnetic

Figure 4. Ordered spin arrangements of YBaMn₂O₅ employed for the extraction of the nine spin exchange parameters J_1-J_9 . The up-spin and down-spin Mn sites are indicated by cyan and white circles, respectively. The Mn³⁺ and Mn²⁺ sites are identified by the gray and white circles, respectively, in the first diagram.

Figure 5. Ordered spin arrangements of YBaM₂O₅ (M = Fe, Co) employed for the extraction of the nine spin exchange parameters J_1-J_{12} . The up-spin and down-spin M sites are indicated by cyan and white circles, respectively. The M³⁺ and M²⁺ sites are identified by the gray and white circles, respectively, in the first diagram.

ground state by using U = 4 eV. For YBaMn₂O₅, however, the ferrimagnetic state resulting from the G-type AFM spin coupling is not the magnetic ground state if the U value is greater than ~ 1 eV (see

Table 2. Relative Energies^{*a*} of Various Ordered Spin States of YBaM₂O₅ (M = Mn, Fe, Co)^{*b*}

	М	AF1	AF2	AF3	AF4	AF5	AF6	AF7		
	Mn	0	192.7	137.4	238.4	95.5	110.0	70.1		
	Fe	131.9	212.6	0	325.8	183.7		315.8		
	Co	128.6	245.9	0			241.7	119.5		
	М	AF8	AF9	AF10	AF11	AF12	AF13	AF14		
	Mn	138.8	147.1	9.4	137.1	139.1				
	Fe	69.7	18.3	235.9	90.9	142.0		247.0		
	Co	123.7	240.9		108.3	204.1	225.6	245.9		
	М	AF15	AF16	AF17	AF18	AF19	AF20	AF21		
	Fe	184.8	249.2	249.1	225.0	214.2	257.0	164.4		
	Co	125.3	241.7	-	119.5	123.7	240.9	121.5		
a	¹ In meV per FU. ^b Determined from the DFT+U calculations.									

Figure 2 and Table 1). A similar situation was found for the magnetic oxide $Ca_3CoMnO_6^{26}$ which consists of trigonal arrangement of the $CoMnO_6$ chains made up of face-sharing CoO_6 trigonal prisms and MnO_6 octahedra; the magnetic ground state that has the $\uparrow\uparrow\downarrow\downarrow$ spin arrangement of the Co^{2+} and Mn^{4+} ions is not reproduced by DFT+U calculations if the *U* value for Mn is greater than 1 eV. Thus, in the present DFT+U calculations, we employed U = 1 eV for YBaMn₂O₅ and U = 4 eV for YBaFe₂O₅ and YBaCo₂O₅.

3. EVALUATION OF SPIN EXCHANGE INTERACTIONS

To examine why YBaM₂O₅ (M = Mn, Fe, Co) adopts the G-type AFM spin coupling, we evaluate the spin exchange parameters J_1-J_9 for YBaMn₂O₅ defined in Figure 3a, and J_1-J_{12} for YBaFe₂O₅ and YBaCo₂O₅ defined in Figure 3b, by performing energy-mapping analysis based on DFT+U calculations. For this purpose, we first determine the relative energies of YBaMn₂O₅ for the ordered spin states listed in Figure 4, and those of YBaM₂O₅ (M = Fe, Co) for the ordered spin states listed in Figure 5. The relative energies of these states obtained from the DFT+U calculations are summarized in Table 2.

In extracting *N* spin exchange parameters, the minimum number of ordered spin states needed in the mapping analysis is N + 1, which leads one-to-one mapping between the relative energy differences and the spin exchange parameters. For cases dealing with magnetic systems containing mixed-valence magnetic ions, there can be several different sets of N + 1 ordered spin states leading to slightly different values for the spin exchange parameters. In such cases, it is more reasonable to employ more ordered spin states than required for one-to-one mapping and carry out mapping analysis on the basis of least-squares fitting.²⁷

The total spin exchange energies of the ordered spin states can be written in terms of the spin Hamiltonian,

$$\hat{\mathbf{H}} = -\sum_{i < j} J_{ij} \hat{\mathbf{S}}_i \cdot \hat{\mathbf{S}}_j \tag{1}$$

in which J_{ij} (= J_1 – J_9 for YBaMn₂O₅ and J_1 – J_{12} for YBaFe₂O₅ and YBaCo₂O₅) is the spin exchange parameter for the interaction between the spin sites *i* and *j* in YBaM₂O₅. In writing the expression for the total spin exchange energy of an ordered spin state, we employ the energy expressions for the ferromagmetic (FM) and AFM arrangements of a general spin dimer whose spin sites *i* and *j* possess N_i and N_j unpaired spins (hence, spins

Table 3. Values of the Spin Exchange Parameters J_i^{a} of YBaM₂O₅ (M = Mn, Fe, Co)^b

Μ	J_1	J_2	J ₃	J_4	J ₅	J ₆	J_7	J_8	J9	J_{10}	J_{11}	J_{12}	
Mr	n −12.9	-8.6	-2.7	-0.2	-1.6	-0.5	-0.9	-0.1	+0.7				
Fe	-12.1	-7.4	-1.3	-8.8	-8.7	-4.2	+1.9	+0.4	+1.3	-1.2	-2.4	+ -2.5	
Со	-17.3	-2.8	-0.7	-3.2	-16.9	-10.0	-0.5	-0.4	+0.1	-0.5	0.0	-0.5	
In	meV	^b De	tormi	nød	by m	annin	a	alveie	has	ed c	n T)ETT	1

^{*a*} In meV. ^{*b*} Determined by mapping analysis based on DFT+ calculations.

Figure 6. (a) Two MO_5 square pyramids associated with the $M-O\cdots O-M$ spin exchange J_2 of $YBaM_2O_5$ (M = Mn, Fe, Co), where the M^{3+} and M^{2+} sites are identified by the gray and white circles, respectively. (b) Magnetic orbitals (*xz* and/or *yz*) of the two MO_5 square pyramids enhancing the strength of the AFM spin exchange J_2 .

 $S_i = N_i/2$ and $S_j = N_j/2$), respectively.^{28,29} Given J_{ij} as the spin exchange parameter for this spin dimer, the energies of the FM and AFM arrangements of this spin dimer ($E_{\rm FM}$ and $E_{\rm AFM}$, respectively) are expressed as

$$E_{\rm FM} = +N_i N_j J_{ij}/4 = S_i S_j J_{ij}$$
$$E_{\rm AFM} = +N_i N_j J_{ij}/4 = S_i S_j J_{ij}$$
(2)

(Note that S = 5/2 and 2 for the high-spin Mn^{2+} and Mn^{3+} ions, respectively, S = 2 and 5/2 for the high-spin Fe^{2+} and Fe^{3+} ions, respectively, and S = 3/2 and 2 for the high-spin Co^{2+} and Co^{3+} ions, respectively, in YBaM₂O₅.) The total spin exchange energy E_{spin} per formula unit (FU) of an ordered spin arrangement, obtained by summing up all pairwise interactions, can be expressed as

$$E_{\rm spin} = \sum_{i} C_{i} J_{i} = C_{1} J_{1} + C_{2} J_{2} + C_{3} J_{3} + \dots$$
(3)

where C_i is the coefficient for the spin exchange parameter J_i . The C_i values for the various ordered spin states for YBaMn₂O₅ are summarized in Supporting Information, Table S1, those for YBaFe₂O₅ in Supporting Information, Table S2, and those for YBaCo₂O₅ in Supporting Information, Table S3. In mapping the relative energies of the ordered spin states determined from the DFT+U calculations onto the corresponding energies expected from the total spin exchange energies, we carry out least-squares fitting analyses. The resulting spin exchange parameters of YBaM₂O₅ (M = Mn, Fe, Co) are summarized in Table 3.

For YBaMn₂O₅ the three strongest spin exchanges J_1 , J_2 , and J_3 are AFM and lead to the ferrimagnetic spin arrangement, as

10646

found experimentally.³ For YBaM₂O₅ (M = Fe, Co), the five strongest spin exchanges J_1 , J_2 , J_4 , J_5 , and J_6 are AFM and lead to the G-type AFM spin arrangement, in agreement with experiment.^{4,5} We note that J_1 and J_3 of YBaMn₂O₅ as well as J_1 , J_4 , J_5 , and J_6 of YBaM₂O₅ (M = Fe, Co) are M–O–M superexchanges with large \angle M–O–M angles. Thus, they are predicted to be strongly AFM,³⁰ as confirmed from the present calculations.

A few exchange parameters of YBaFe₂O₅ were deduced in the neutron scattering study of Chang et al.¹⁵ (The notations of their spin exchange parameters correspond to ours as follows: $J_1 = J_{23}^c$, $J_2 = J_{\text{direct}}$, $J_4 = J_{22}^{\text{b}}$, $J_5 = J_{33}^{\text{b}}$, and $J_6 = J_{23}^{\text{a}}$.) By using perturbation theory, Chang et al. estimated the J_2/J_1 ratio to be approximately 0.01, so they neglected J_2 in their analysis of the spin wave dispersion relations. However, our DFT+U calculations show that the J_2 exchanges of YBaM₂O₅ are quite strong, that is, $J_2/J_1 =$ 0.67, 0.61, and 0.16 for M = Mn, Fe, and Co, respectively. As found in numerous magnetic oxides,^{18,24,31} these M-O···· O-M exchanges between the dumbbells along the c-direction (Figure 6a) are strongly AFM because their $O \cdots O$ contact distances are short [2.800 (×4) Å for YBaMn₂O₅, 2.753 (×2) and 2.838 (×2) Å for YBaFe₂O₅, and 2.796 (×2) and 2.829 $(\times 2)$ Å YBaCo_2O_5]. Because of the short O \cdots O contacts and the fact the $\angle O_{ap}-M-O_{bs}$ angles of the MO₅ square pyramids are greater than 90° ,¹⁷ the magnetic orbitals (e.g., *xz* and/or *yz*) of the MO_5 square pyramids associated with J_2 overlap substantially through their O 2p orbitals (Figure 6b) thereby making J_2 strongly AFM. Consequently, the 3D AFM ordering temperatures of YBaFe₂O₅ and YBaCo₂O₅ are high (i.e., $T_N = 430 \text{ K}^4$ and 330 K⁵, respectively), and the ferrimagnetic ordering temperature of YBaMn₂O₅ is substantially high as well (i.e., 167 K).² Thus, neglecting J_2 is not a good approximation.

By introducing another approximation, $J_{23} = (2J_{23}^a + J_{23}^c)/3$, Chang et al.¹⁵ obtained $J_{23}^b \approx -5.9 \text{ meV}$, $J_{22}^b \approx -3.4 \text{ meV}$, and $J_{23} \approx -6.0 \text{ meV}$ for YBaFe₂O₅. These estimates are comparable to the corresponding numbers of our calculations (i.e., -8.7, -8.8, and -6.8 meV, respectively). In their DFT study of YBaFe₂O₅,¹³ Spiel et al. reported that $J_{23}^b = -10.0 \text{ meV}$, $J_{22}^b = -4.3 \text{ meV}$, $J_{23}^a = -4.2 \text{ meV}$, and $\langle J_{23}^c \rangle \equiv (J_{23}^c + J_{\text{direct}})/2 = -5.6 \text{ meV}$. The corresponding J_{23}^a and $\langle J_{23}^c \rangle$ values of our calculations are -4.2and -9.8 meV, respectively. Thus, the spin exchange parameters of Spiel et al. are comparable to ours.

4. PREFERRED CHARGE ORDER PATTERN

We now examine the energetic difference in the charge order patterns of $YBaM_2O_5$ (M = Mn, Fe, Co) in their magnetic ground states by performing DFT+U calculations. For this purpose, it is necessary to determine the relative energies of the CCO and SCO patterns of each $YBaM_2O_5$ (M = Mn, Fe, Co). For YBaMn₂O₅, we optimized the experimentally observed CCO structure. To obtain its hypothetical SCO structure, we started our optimization using the geometry of the experimentally observed SCO structure of YBaFe₂O₅. Our calculations show that the CCO structure is lower in energy than the SCO structure by 144 meV per FU for YBaMn₂O₅. For YBaFe₂O₅ and YBaCo₂O₅, we optimized their experimentally observed SCO structures. To find their hypothetical CCO structures, we began our optimization using the CCO structure of YBaMn₂O₅. The SCO structure is calculated to be more stable than the CCO structure by 133 meV per FU for YBaFe₂O₅, and by 50 meV per FU for YBaCo₂O₅. All these results are consistent with the

experimental observations. The preference for the SCO over the CCO is considerably stronger for $YBaFe_2O_5$ than for $YBaCo_2O_5$ (133 vs 50 meV per FU), although JT-active ions are absent in $YBaFe_2O_5$ but present in $YBaCo_2O_5$. Therefore, the charge order patterns of $YBaM_2O_5$ (M = Mn, Fe, Co) are not determined by whether their transition-metal ions are JT-active or not.

5. CONCLUDING REMARKS

In YBaM₂O₅ (M = Mn, Fe, Co) the interslab M–O···O–M spin exchanges along the *c*-axis are strongly AFM. This together with the strong AFM intraslab spin exchanges explains why the 3D AFM ordering in YBaM₂O₅ (M = Fe, Co) takes place at temperatures well above the room temperature (i.e., $T_N = 430 \text{ K}^4$ and 330 K,⁵ respectively) and why the ferrimagnetic ordering temperature of YBaMn₂O₅ is high (i.e., 167 K).² Our calculations show that the observed charge order patterns of YBaM₂O₅ (M = Mn, Fe, Co) are not determined by whether or not their transition-metal ions are JT-active.

ASSOCIATED CONTENT

Supporting Information. Further details are given in Tables S1–S3. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: mike_whangbo@ncsu.edu.

ACKNOWLEDGMENT

The research was supported by the Office of Basic Energy Sciences, Division of Materials Sciences, U.S. Department of Energy, under Grant DE-FG02-86ER45259, and also by computing resources at the NERSC and the HPC Centers.

REFERENCES

- (2) McAllister, J. A.; Attfield, J. P. J. Mater. Chem. 1998, 8, 1291.
- (3) Millange, F.; Suard, E.; Caignaert, V.; Raveau, B. *Mater. Res. Bull.* **1999**, 34, 1.
 - (4) Woodward, P. M.; Karen, P. Inorg. Chem. 2003, 42, 1121.
- (5) Vogt, T.; Woodward, P. M.; Karen, P.; Hunter, B. A.; Henning, P.; Moodenbaugh, A. R. *Phys. Rev. Lett.* **2000**, *84*, 2969.
 - (6) Wu, H. Phys. Rev. B 2000, 62, R11953.
 - (7) Kwon, S. K.; Park, J. H.; Min, B. I. Phys. Rev. B 2000, 62, R14637.
- (8) Vidya, R.; Ravindran, P.; Kjekshus, A.; Fjellvåg, H. Phys. Rev. B 2002, 65, 144422.

(9) Vidya, R.; Ravindran, P.; Vajeeston, P.; Fjellvåg, H.; Kjekshus, A. Ceram. Int. 2004, 30, 1993.

(10) Xiang, H. P.; Liu, X. J.; Wu, Z. J.; Meng, J. J. Phys. Chem. B 2006, 110, 2606.

(11) Hap, X.; Xu, Y.; Lv, M.; Zhou, D.; Wu, Z.; Meng, J. *Inorg. Chem.* **2008**, 47, 4734.

(12) Vidya, R.; Ravindran, Knizek, K.; P.; Kjekshus, A.; Fjellvåg, H. Inorg. Chem. **2008**, 47, 6608.

- (13) Spiel, C.; Blaha, P.; Schwarz, K. Phys. Rev. B 2009, 79, 115123.
- (14) Wang, J.; Zhang, W.; Xing, D. Phys. Rev. B 2002, 66, 052410.

(15) Chang, S.; Karen, P.; Hehlen, M. P.; Trouw, F. R.; McQueeney, R. J. Phys. Rev. Lett. 2007, 99, 037202.

(16) Albright, T. A.; Burdett, J. K.; Whangbo, M.-H. Orbital Interactions in Chemistry; Wiley: New York, 1985. (17) The $\angle O_{ap}$ -M-O_{bs} angles of the MO₅ square pyramids of YBaM₂O₅ are considerably greater than 90°. Namely, 103.7° (×4) at the Mn²⁺ site and 98.5° (×4) at the Mn³⁺ site in YBaMn₂O₅;³ 98.7° (×2) along the *a*-axis and 101.5° (×2) along the *b*-axis at the Fe²⁺ site, and 102.7° (×2) along the *a*-axis and 103.0° (×2) along the *b*-axis at the Fe³⁺ site in YBaFe₂O₅;⁴ 98.1° (×2) along the *a*-axis and 97.9° (×2) along the *b*-axis at the Co²⁺ site, and 104.9° (×2) along the *a*-axis and 105.5° (×2) along the *b*-axis at the Co³⁺ site in YBaCo₂O₅.⁵

(18) Whangbo, M.-H.; Koo, H.-J.; Dai, D. J. Solid State Chem. 2003, 176, 417.

- (19) Blöchl, P. E. Phys. Rev. B 1994, 50, 17–953.
- (20) Kresse, G.; Joubert, G. Phys. Rev. B 1999, 59, 1758.
- (21) Kresse, G.; Furthmüller, J. Comput. Mater. Sci. 1996, 6, 15. Phys. Rev. B 1996, 54, 11169.

(22) Perdew, J. P.; Burke, S.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.

(23) Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Humphreys, C. J.; Sutton, A. P. *Phys. Rev. B* **1998**, *57*, 1505.

(24) Kan, E. J.; Wu, F.; Lee, C.; Kang, J.; Whangbo, M.-H. Inorg. Chem. 2011, 50, 4182.

(25) Tian, C.; Wibowo, A. C.; zur Loye, H.-C.; Whangbo, M.-H. Inorg. Chem. 2011, 50, 4142.

(26) Zhang, Y.; Xiang, H. J.; Whangbo, M.-H. Phys. Rev. B 2009, 79, 054432.

(27) Xiang, H. J.; Kan, E. J.; Wei, S.-H.; Whangbo, M.-H.; Yang, J. L. *Phys. Rev. B* **2009**, *80*, 132408.

(28) Dai, D.; Whangbo, M.-H. J. Chem. Phys. 2001, 114, 2887.

(29) Dai, D.; Whangbo, M.-H. J. Chem. Phys. 2003, 118, 29.

(30) Goodenough, J. B. *Magnetism and the Chemical Bond*; Wiley: Cambridge, MA, 1963.

(31) Wu, F.; Kan, E. J.; Whangbo, M.-H. Inorg. Chem. 2010, 49, 3025.

⁽¹⁾ Chapman, J. P.; Attfield, J. P.; Molgg, M.; Friend, C. M.; Beales, T. P. Angew. Chem., Int. Ed. Engl. **1996**, 35, 2482.